Что такое энергия?

История термина

Термин «энергия» происходит от греческого слова ἐνέργεια, которое впервые появилось в работах Аристотеля и обозначало действие или действительность (то есть действительное осуществление действия в противоположность его возможности). Это слово, в свою очередь, произошло от греческого ἔργον («эргон») — «работа». Праиндоевропейский корень werg обозначал работу или деятельность (ср. англ. work, нем. Werk) и в виде οργ/ουργ присутствует в таких греческих словах, как оргия или теургия и т. п.

Томас Юнг первым использовал понятие «энергия» в современном смысле слова

Прибор Джоуля для измерения механического эквивалента тепла. Нисходящий груз, прикрепленный к струне, вызывает вращение погруженного в воду весла.

Лейбниц в своих трактатах 1686 и 1695 годов ввёл понятие «живой силы» (vis viva), которую он определил как произведение массы объекта и квадрата его скорости (в современной терминологии — кинетическая энергия, только удвоенная). Кроме того, Лейбниц верил в сохранение общей «живой силы». Для объяснения уменьшения скорости тел из-за трения, он предположил, что утраченная часть «живой силы» переходит к атомам.

Маркиза Эмили дю Шатле в книге «Учебник физики» (фр. Institutions de Physique, 1740), объединила идею Лейбница с практическими наблюдениями Виллема Гравезанда.

В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия «живая сила». Гаспар-Гюстав Кориолис раскрыл связь между работой и кинетической энергией в 1829 году. Уильям Томсон (будущий лорд Кельвин) впервые использовал термин «кинетическая энергия» не позже 1851 года, а в 1853 году Уильям Ренкин впервые ввёл понятие «потенциальная энергия».

Несколько лет велись споры, является ли энергия субстанцией (теплород) или только физической величиной.

Развитие паровых двигателей требовало от инженеров разработать понятия и формулы, которые позволили бы им описать механический и термический КПД своих систем. Инженеры (Сади Карно), физики (Джеймс Джоуль, Эмиль Клапейрон и Герман Гельмгольц), математики — все развивали идею, что способность совершать определённые действия, называемая работой, была как-то связана с энергией системы. В 1850-х годах, профессор натурфилософии из Глазго Уильям Томсон и инженер Уильям Ренкин начали работу по замене устаревшего языка механики с такими понятиями как «кинетическая и фактическая (actual) энергии». Уильям Томсон соединил знания об энергии в законы термодинамики, что способствовало стремительному развитию химии. Рудольф Клаузиус, Джозайя Гиббс и Вальтер Нернст объяснили многие химические процессы, используя законы термодинамики. Развитие термодинамики было продолжено Клаузиусом, который ввёл и математически сформулировал понятие энтропии, и Джозефом Стефаном, который ввёл закон излучения абсолютно чёрного тела. В 1853 году Уильям Ренкин ввёл понятие «потенциальная энергия». В 1881 году Уильям Томсон заявил перед слушателями:

В течение следующих тридцати лет эта новая наука имела несколько названий, например, «динамическая теория тепла» (англ. dynamical theory of heat) и «энергетика» (англ. energetics). В 1920-х годах общепринятым стало название «термодинамика» — наука о преобразовании энергии.

Особенности преобразования тепла и работы были показаны в первых двух законах термодинамики. Наука об энергии разделилась на множество различных областей, таких как биологическая термодинамика и термоэкономика (англ. thermoeconomics). Параллельно развивались связанные понятия, такие как энтропия, мера потери полезной энергии, мощность, поток энергии за единицу времени, и так далее. В последние два века использование слова энергия в ненаучном смысле широко распространилось в популярной литературе.

В 1918 году было доказано, что закон сохранения энергии есть математическое следствие трансляционной симметрии времени, величины сопряжённой энергии. То есть энергия сохраняется потому, что законы физики не изменяются с течением времени (см. Теорема Нётер, изотропия пространства).

В 1961 году выдающийся преподаватель физики и нобелевский лауреат, Ричард Фейнман в лекциях так выразился о концепции энергии:

Задачи на кинетическую энергию и решение

Задача 1 на нахождение кинетической энергии

Слон в 6000 кг бежит со скоростью 10 м / с. Какова его кинетическая энергия? Какова скорость пушечного ядра весом 1 кг, если у него была та же самая кинетическая энергия слона?

Ответ

Используя уравнение кинетической энергии, энергия слона равна:

Рассчитав кинетическую энергию, мы можем получить скорость пули, очистив v:

Это означает, что скорость пули равна 775 м / с. Сравните это со скоростью слона: вот это разница!

Задача 2

Мужчина врезался в столб на своей машине. Когда он пошел, чтобы сообщить о катастрофе, он сказал, что ехал с допустимой скоростью во время аварии. Но следователь помнил физику 7 и 8 класса и установил, что скорость транспортного средства была в два раза выше, чем утверждал водитель. Какова взаимосвязь между кинетической энергией и скоростью, сообщаемой человеком, и кинетической энергией со скоростью, рассчитанной следователем?

Ответ

Мы будем рассматривать Ec1 как кинетическую энергию транспортного средства на скорости v1, сообщаемой человеком, и Ec2 как кинетическую энергию со значением скорости v2, рассчитанным исследователем. Соотношение между кинетическими энергиями рассчитывается путем деления энергий следующим образом:

Следователь сказал, что скорость во время аварии была вдвое выше, чем сообщал человек, то есть:

Подставим значение скорости в уравнение:

Исключая похожие термины, мы имеем:

Это означает, что кинетическая энергия в соответствии со скоростью, сообщаемой человеком, составляет четверть кинетической энергии по расчетам следователя. Проще говоря, ущерб, нанесенный автомобилем, был в четыре раза больше, чем сообщал мужчина.

История термина

Термин «энергия» происходит от греческого слова ἐνέργεια, которое впервые появилось в работах Аристотеля и обозначало действие или действительность (т.е. действительное осуществление действия в противоположность его возможности), праиндоевропейский корень werg обозначал работу или деятельность (ср. англ. work, нем. Werk) и в виде οργ/ουργ присутствует в таких греческих словах, как оргия или теургия и т.п.

Томас Юнг первым использовал понятие «энергия» в современном смысле слова

Лейбниц в своих трактатах 1686 и 1695 годов ввёл понятие «живой силы» (vis viva), которую он определил как произведение массы объекта и квадрата его скорости (в современной терминологии — кинетическая энергия, только удвоенная). Кроме того, Лейбниц верил в сохранение общей «живой силы». Для объяснения уменьшения скорости тел из-за трения, он предположил, что утраченная часть «живой силы» переходит к атомам.

Маркиза Эмили дю Шатле в книге «Учебник физики» (фр. Institutions de Physique, 1740), объединила идею Лейбница с практическими наблюдениями Виллема Гравезанда.

В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия «живая сила». Гаспар-Гюстав Кориолис раскрыл связь между работой и кинетической энергией в 1829 году. Уильям Томсон (будущий лорд Кельвин) впервые использовал термин «кинетическая энергия» не позже 1851 года, а в 1853 году Уильям Ренкин впервые ввёл понятие «потенциальная энергия».

Несколько лет велись споры, является ли энергия субстанцией (теплород) или только физической величиной.

Развитие паровых двигателей требовало от инженеров разработать понятия и формулы, которые позволили бы им описать механический и термический КПД своих систем. Инженеры (Сади Карно), физики (Джеймс Джоуль, Эмиль Клапейрон и Герман Гельмгольц), математики — все развивали идею, что способность совершать определённые действия, называемая работой, была как-то связана с энергией системы. В 1850-х годах, профессор натурфилософии из Глазго Уильям Томсон и инженер Уильям Ренкин начали работу по замене устаревшего языка механики с такими понятиями как «кинетическая и фактическая (actual) энергии». Уильям Томсон соединил знания об энергии в законы термодинамики, что способствовало стремительному развитию химии. Рудольф Клаузиус, Джозайя Гиббс и Вальтер Нернст объяснили многие химические процессы, используя законы термодинамики. Развитие термодинамики было продолжено Клаузиусом, который ввёл и математически сформулировал понятие энтропии, и Джозефом Стефаном, который ввёл закон излучения абсолютно чёрного тела. В 1853 году Уильям Ренкин ввёл понятие «потенциальная энергия». В 1881 году Уильям Томсон заявил перед слушателями:

В течение следующих тридцати лет эта новая наука имела несколько названий, например, «динамическая теория тепла» (англ. dynamical theory of heat) и «энергетика» (англ. energetics). В 1920-х годах общепринятым стало название «термодинамика» — наука о преобразовании энергии.

Особенности преобразования тепла и работы были показаны в первых двух законах термодинамики. Наука об энергии разделилась на множество различных областей, таких как биологическая термодинамика и термоэкономика (англ. thermoeconomics). Параллельно развивались связанные понятия, такие как энтропия, мера потери полезной энергии, мощность, поток энергии за единицу времени, и так далее. В последние два века использование слова энергия в ненаучном смысле широко распространилось в популярной литературе.

В 1918 году было доказано, что закон сохранения энергии есть математическое следствие трансляционной симметрии времени, величины сопряжённой энергии. То есть энергия сохраняется, потому что законы физики не отличают разные моменты времени (см. Теорема Нётер, изотропия пространства).

В 1961 году выдающийся преподаватель физики и нобелевский лауреат, Ричард Фейнман в лекциях так выразился о концепции энергии:

Примечания

  1. Смит, Кросби. The science of energy: a cultural history of energy physics in Victorian Britain. — The University of Chicago Press, 1998. — ISBN 0-226-76421-4.
  2. Томсон, Уильям. Об источниках энергии, доступных человеку для совершения механических эффектов = On the sources of energy available to man for the production of mechanical effect. — BAAS Rep, 1881. С. 513
  3. Richard Feynman. The Feynman Lectures on Physics. — США: Addison Wesley, 1964. — Vol. 1. — ISBN 0-201-02115-3.
  4. Фейнман, Ричард. Фейнмановские лекции по физике = The Feynman Lectures on Physics. — Т. 1.
  5. Ландау, Л. Д., Лифшиц, Е. М. Теоретическая физика. — 5-е изд. — М.: Физматлит, 2004. — Т. I. Механика. — 224 с. — ISBN 5-9221-0055-6.
  6. , с. 11.
  7. , с. 18.
  8. , с. 19.
  9. Джоуль (единица энергии и работы) — статья из Большой советской энциклопедии. Г. Д. Бурдун. 
  10. ↑ , с. 134.

1.2. Энергия

Импульс тела: $\overrightarrow{p} = m\cdot \overrightarrow{v}$ , где $\overrightarrow{p}$ ― импульс тела (кг∙м/с), m ― масса тела (кг), $\overrightarrow{v}$ ― скорость тела (м/с).

Импульс ― векторная величина и сонаправлена со скоростью тела.

Тела могут обмениваться импульсами. Например, если движущийся шарик столкнется с покоящимся, то дальше они оба приобретут скорость и начнут двигаться. Для того, чтобы понять, как передается импульс и вычислить его, возникла необходимость распознавать разные виды ударов.

Удар, после которого объекты продолжают существовать отдельно ― абсолютно упругий удар.

Удар, после которого тела слипаются и двигаются вместе ― абсолютно неупругий.

Возникает вопрос: зачем вообще нужен этот импульс? На самом деле импульс ― это еще одна величина, которая, как и энергия сохраняется. Как и для энергии, для импульса существует закон сохранения и формулируется он очень похоже: в замкнутой системе векторная сумма импульсов всех тел системы постоянна

Именно свойство сохранения импульса делает его такой важной для нас величиной

$\overrightarrow{p_1} + \overrightarrow{p_2} = \overrightarrow{p_1}’ + \overrightarrow{p_2}’$ 

Закон сохранения импульса для разных ударов:

для абсолютно упругого удара: $m_1 \overrightarrow{v_1} + m_2 \overrightarrow{v_2} = m_1 \overrightarrow{u_1} + m_2\overrightarrow{u_2} $

для абсолютно неупругого удара: $m \overrightarrow{v_1} + m_2 \overrightarrow{v_2} = (m_1+m_2) \overrightarrow{u}$

Если при отсутствии внешних сил импульс сохраняется, то, когда появятся внешне силы он начнет изменяться

Причем важно не только значение воздействующей силы, но и время ее воздействия:. $\Delta\overrightarrow{p} = \overrightarrow{F}\Delta t $ , где $\Delta\overrightarrow{p}$ ― изменение импульса (кг·м/с), $\overrightarrow{F}$ ― сила (Н), ∆t ― время (с)

$\Delta\overrightarrow{p} = \overrightarrow{F}\Delta t $ , где $\Delta\overrightarrow{p}$ ― изменение импульса (кг·м/с), $\overrightarrow{F}$ ― сила (Н), ∆t ― время (с).

Прочитано
Отметь, если полностью прочитал текст

В специальной теории относительности

Энергия и масса

Основная статья: Эквивалентность массы и энергии

Согласно специальной теории относительности между массой и энергией существует связь, выражаемая знаменитой формулой Эйнштейна:

E=mc2,{\displaystyle E=mc^{2},}
где E{\displaystyle E} — энергия системы;
m{\displaystyle m} — её масса;
c{\displaystyle c} — скорость света в вакууме.

Несмотря на то, что исторически предпринимались попытки трактовать это выражение как полную эквивалентность понятия энергии и массы, что, в частности, привело к появлению такого понятия как релятивистская масса, в современной физике принято сужать смысл этого уравнения, понимая под массой массу тела в состоянии покоя (так называемая масса покоя), а под энергией — только внутреннюю энергию, заключённую в системе.

Энергия тела, согласно законам классической механики, зависит от системы отсчёта, то есть неодинакова для разных наблюдателей. Если тело движется со скоростью v{\displaystyle v} относительно некоего наблюдателя, то для другого наблюдателя, движущегося с той же скоростью, оно будет казаться неподвижным. Соответственно, для первого наблюдателя кинетическая энергия тела будет равна, mv22{\displaystyle mv^{2}/2}, где m{\displaystyle m} — масса тела, а для другого наблюдателя — нулю.

Эта зависимость энергии от системы отсчёта сохраняется также в теории относительности. Для определения преобразований, происходящих с энергией при переходе от одной инерциальной системы отсчёта к другой используется сложная математическая конструкция — тензор энергии-импульса.

Зависимость энергии тела от скорости рассматривается уже не так, как в ньютоновской физике, а согласно вышеназванной формуле Эйнштейна:

E=mc21−v2c2,{\displaystyle E={\frac {mc^{2}}{\sqrt {1-v^{2}/c^{2}}}},}
где m{\displaystyle m} — инвариантная масса. В системе отсчёта, связанной с телом, его скорость равна нулю, а энергия, которую называют энергией покоя, выражается формулой:
E=mc2.{\displaystyle E_{0}=mc^{2}.}

Это минимальная энергия, которую может иметь тело, обладающее массой. Значение формулы Эйнштейна также в том, что до неё энергия определялась с точностью до произвольной постоянной, а формула Эйнштейна указывает абсолютное значение этой постоянной.

Энергия и импульс

Специальная теория относительности рассматривает энергию как компоненту 4-импульса (4-вектора энергии-импульса), в который наравне с энергией входят три пространственные компоненты импульса. Таким образом энергия и импульс оказываются связанными и оказывают взаимное влияние друг на друга при переходе из одной системы отсчёта в другую.

Примечания

  1. ↑ (PDF) (недоступная ссылка). 30. IEA (2017). Дата обращения 20 февраля 2018.
  2. Под общей редакцией чл.-корр. РАН Е. В. Аметистова. том 1 под редакцией проф. А. Д. Трухния // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00162 2.
  3. То есть мощность одной установки (или энергоблока).
  4. ↑ Классификация Российской Академии Наук, которая ей всё же считается достаточно условной
  5. Это самое молодое направление традиционной электроэнергетики, возраст которого немногим более 20 лет.
  6. Данные за 2011 год.
  7.  (англ.) (недоступная ссылка). ISBN 978 0 94612 130 4 11. WORLD ENERGY COUNCIL, Bloomberg (2013). Дата обращения 29 июля 2015.
  8.  (англ.) 5. Мировой энергетический совет (2013). Дата обращения 20 октября 2019.
  9. До недавнего закрытия своей единственной Игналинской АЭС, наряду с Францией по этому показателю также лидировала Литва.
  10. В.А.Веников, Е.В.Путятин. Введение в специальность: Электроэнергетика. — Москва: Высшая школа, 1988.
  11. ↑ Энергетика в России и в мире: проблемы и перспективы. М.:МАИК «Наука/Интерпереодика», 2001.
  12. Эти понятия могут различно трактоваться.
  13. Данные за 2005 год
  14. ГОСТ 24291-90 Электрическая часть электростанции и электрической сети. Термины и определения
  15. Под общей редакцией чл.-корр. РАН Е.В. Аметистова. том 2 под редакцией проф.А.П.Бурмана и проф.В.А.Строева // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00163 9.
  16. В зависимости от климата в некоторых странах нет такой необходимости.
  17. . Дата обращения 4 декабря 2014.
  18. Диаметром около 9 мм и высотой 15—30 мм.
  19. Т. Х. Маргулова. Атомные электрические станции. — Москва: ИздАТ, 1994.
  20. Энергосистема — статья из Большой советской энциклопедии. 
  21. ГОСТ 21027-75 Системы энергетические. Термины и определения
  22. Не более нескольких километров.
  23. Под редакцией С.С.Рокотяна и И.М.Шапиро. Справочник по проектированию энергетических систем. — Москва: Энергоатомиздат, 1985.

Информация: истинная основа Вселенной

Прежде всего, разберемся – что такое информация, и какова ее роль в Мироздании?

И здесь скрывается один из главных парадоксов нашего мира: материя просто не может существовать при отсутствии информации, этой совершенно «нематериальной» субстанции! Ведь любой объект, процесс или явление обладают определенными свойствами. Эти свойства характеризуют такой процесс или объект, «проявляют» его в нашем мире.

Например, каждая снежинка из триллиона обладает собственной, неповторимой формой. Для каждой снежинки имеется уникальная информация, описывающая эту снежинку и ее неповторимый набор характеристик. Можно назвать такой набор «информационная матрица». Снежинка рождает эту матрицу самим фактом своего существования, и «транслирует» ее в окружающий мир.

Если такой матрицы нет – значит, распознать снежинку невозможно. О ней никому не известно, она не проявлена. Ее попросту не существует в нашем мире.

Когда у тебя имеются характеристики чего-то, то можно сказать, что ты обладаешь знанием об этом. И чем полнее и точнее характеристики – тем больше это знание. Причем, такое знание – это характеристика, описание чего-либо, но не это «что-то».

Снежинка не может существовать без своей информационной матрицы, а вот матрица может существовать без снежинки. Можно обладать полным и всеобъемлющим знанием о процессе плавания, при этом никогда не входя в воду.

Для увеличения схемы нажмите на нее.

Все, что мы наблюдаем вокруг, существует не само по себе, а имеет глубинную истинную основу – . Именно так описывает мироздание – современная научная теория, являющаяся одной из интерпретаций квантовой механики. При этом, ключевые положения теории декогеренции основаны на

Это – мир Безграничных Потенциальных Возможностей. Из этого Безграничного Потенциала возникает наш мир, используя механизм декогеренции, то есть «материализации» реальности в результате информационного обмена.

Если вкратце описывать теорию декогеренции, то возникновение реальности похоже на детскую сказку «Про Козленка, который умел считать до десяти». До тех пор, пока Козленок (выступающий в качестве «наблюдателя») не подсчитает пассажиров – корабль тонет. Он тонет, потому что отсутствует нужная информация! Как только произведен подсчет животных, и выясняется, что с грузоподъемностью все в порядке — корабль перестает тонуть. Приблизительно так же информационный обмен проявляет материальные объекты в нашем мире.

Подробнее о том, каким образом информация формирует нашу реальность, читай

При этом, из Абсолюта возникает не только видимая нами «физическая» Вселенная, но и иные уровни Мироздания. Иерархия уровней, которые называются «тонкие миры» или «тонкие планы». Эта иерархия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector